MA6251 Mathematics-IIÂ Model Question Paper
Department : Common for All Branches
MA6251 Mathematics-II Model Question Paper
SUBJECT CODE/NAME: MA6251/Mathematics-II Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Date:
Time: 3 Hrs                                                                       Maximum: 100 Marks
—————————————————————————————————
Part A (10×2=20 Marks)
- 1) Find the Directional Derivative of at  in the direction of
- 2) Prove that is irrotational.
- 3) Solve.
- 4) Transform the equation into a differential equation with constant coefficients.
- 5) Find
- 6) State convolution theorem.
- 7) Show that is harmonic.
- 8) Find the invariant points of the bilinear transformation
- 9) Calculate the residue of at its poles.
- 10) Evaluate where C is the unit circle
PART – B (5 x 16 = 80)
- 11) (i)    a)        Show that   is an irrational vector for any value of  but solenoidal only if
- b)        Verify Greens theorem in the XY- plane for  where C is                              the boundary of the region given by .
(Or)
(ii)    Verify Gauss Divergence Theorem for  taken over a      rectangular parallelepiped
- 12) (i) a) Â Â Â Â Â Â Â Solve
- b) Â Â Â Â Â Â Â Solve
(Or)
(ii)    a)        Solve  using the method of variation of  parameters.
- b) Â Â Â Â Â Â Â Solve .
- 13) (i) a)        Find the Laplace transform of .
-  b)       Solve by using Laplace transform  given
(Or)
(ii) Â Â Â a)Â Â Â Â Â Â Â Â Find the Laplace transform of
With
- b) Using convolution theorem find
- 14) (i) a)        Prove that an analytic function with constant modulus is constant.
- b) Find the Mobius transformation that maps the points  into  What                   are the invariant points of this transformation?
(Or)
(ii) Â Â Â a) Â Â Â Â Â Â Â Prove that
- b) Show that under the transformation  the image of the hyperbola  is the                       lemniscate
- 15) (i) a)        Evaluate  where C is  using Cauchy’s integral formula.
- b)        Find the Laurent’s series expansion for  valid in the annular region
(Or)
(ii) Â Â Â a) Â Â Â Â Â Â Â Using contour integration evaluate
- Â Â Â Â Â Â Â Â Â Â b) Â Â Â Â Â Â Â Prove that
**************