MA6459-NUMERICAL-METHODS-SYLLABUS-REGULATION-2013
MA6459 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â NUMERICALÂ METHODSÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â L T P C Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 3 1 0 4
OBJECTIVES:
- This course aims at providing the necessary basic concepts of a few numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology
UNIT IÂ Â Â Â Â Â Â Â Â Â Â Â SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS Â Â Â Â Â 10+3
Solution of algebraic and transcendental equations – Fixed point iteration method â Newton Raphson method- Solution of linear system of equations – Gauss elimination method â Pivoting – Gauss Jordan method â Iterative methods of Gauss Jacobi and Gauss Seidel – Matrix Inversion by Gauss Jordan method – Eigen values of a matrix by Power method.
UNIT IIÂ Â Â Â Â Â Â Â Â Â Â INTERPOLATIONÂ ANDÂ APPROXIMATION Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 8+3
Interpolation with unequal intervals – Lagrange’s interpolation â Newtonâs divided difference interpolation â Cubic Splines – Interpolation with equal intervals – Newtonâs forward and backward difference formulae.
UNIT IIIÂ Â Â Â Â Â Â Â Â Â NUMERICALÂ DIFFERENTIATIONÂ ANDÂ INTEGRATION Â Â Â Â Â Â Â Â 9+3
Approximation  of  derivatives  using  interpolation  polynomials  –  Numerical  integration  using Trapezoidal, Simpsonâs 1/3 rule â Rombergâs method – Two point and three point Gaussian quadrature formulae â Evaluation of double integrals by Trapezoidal and Simpsonâs 1/3 rules.
UNIT IVÂ Â Â Â INITIALÂ VALUEÂ PROBLEMSÂ FOR ORDINARYÂ DIFFERENTIAL EQUATIONS Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 9+3
Single Step methods – Taylorâs series method – Eulerâs method – Modified Eulerâs method – Fourth order Runge-Kutta method for solving first order equations – Multi step methods – Milneâs and Adams- Bash forth predictor corrector methods for solving first order equations.
UNIT VÂ Â Â Â Â Â Â Â Â Â BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 9+3
Finite difference methods for solving two-point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplaceâs and Poissonâs equations on rectangular domain â One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods â One dimensional wave equation by explicit method.
TOTAL (L:45+T:15): 60 PERIODS
OUTCOMES:
- The students will have a clear perception of the power of numerical techniques, ideas and would be able to demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields.
TEXT BOOKS:
- B.S.,  and  Grewal.  J.S.,”Numerical  methods  in  Engineering  and  Science”,      Khanna Publishers, 9th Edition, New Delhi, 2007.
- C. F., and Wheatley. P. O., “Applied Numerical Analysis”, Pearson Education, Asia,
6th Edition, New Delhi, 2006.
REFERENCES:
- S.C., and Canale.R.P., “Numerical Methods for Engineers, Tata McGraw Hill, 5th Edition, New Delhi, 2007
- Brian  “A friendly introduction to Numerical analysis”, Pearson Education, Asia,    New Delhi, 2007.
- Sankara Rao. K., “Numerical methods for Scientists and Engineers”, Prentice Hall of India Private, 3rd Edition, New Delhi, 2007.
MA6459 NUMERICAL METHODS SYLLABUS REGULATION 2013 PDF Â Â Â Click Here To Download
MA6459 NUMERICAL METHODS SYLLABUS REGULATION 2017